
Inverse Kinematics On The Java 3D Scene Graph

Fred Klingener
klingener@BrockEng.com
Brock Engineering, Roxbury CT

Abstract

Kinematics, the study of the motion of bodies without regard to
their masses or the forces causing their motion, has been around
for centuries. The scene graph is the emergent standard hierarchcal
data structure for computer modeling of three dimensional worlds,
but kinematic models of machines or mechanisms that have exter-
nal constraints or constraints that span interior nodes do not sit
comfortably on its open-branched tree topology. Methods that
have been developed to solve the kinematics of a constrained
model tend to work backwards down the scene graph’s branches
from leaf to root, and the term "inverse kinematics" has been at-
tached to them.

Inverse kinematics solvers have long been fixtures in compu-
tational modeling with particular activity in robotics, in human
figure animation, and in proprietary CAD and machine design
software. This paper describes a general approach to solving in-
verse kinematics on the Java 3D™ scene graph and illustrates the
approach using a particular example from classical mechanics with
a focus on methods suitable for high fidelity simulation of con-
tinuous processes.

Keywords: inverse kinematics, scene graph, Java 3D™

Categories and subject descriptors: I.6.8 [SIMULATION AND
MODELING]: Types of Simulation---Continuous; J.2
PHYSICAL SCIENCES AND ENGINEERING---Engineering

1 INTRODUCTION

1.1 Kinematics

Kinematics studies the geometric properties of the motion of
points without regard to their masses or to the forces acting on
them. A set of points with the property that the distances be-
tween any two of them never varies is called a rigid body or rigid
link. The position of a rigid body in space is defined by six di-
mensions, three translations and three rotations. A kinematic
chain is a set of links connected by joints that constrain their rela-
tive movement. An open chain is a set of links (such as a common
industrial robot) with one end attached to a rigid base . A closed
chain may be attached to a rigid base in more than one place. A
single loop closed chain attached at each end is commonly called a
mechanism.

The state of a mechanism is the set of properties needed to

completely determine the positions of all of its constituent parts.
These properties are called independent state variables, and their
count determines a mechanism’s degrees of freedom. Constraints
are limitations on the motion of a mechanism or of its constituent
parts. A number of dependent variables may be required to de-
termine the relative positions of a mechanism’s parts, and they are
derived from the independent variables and the external con-
straints. A determinate mechanism has the property that the
number of dependent variables is equal to the number of external
constraint conditions.

The links of a planar mechanism are constrained to move in a
plane parallel to a base plane, usually by hinged joints whose axes
lie perpendicular to the base plane. The axes of hinged joints of a
spherical mechanism all intersect at a point. Joints of spatial
mechanisms have no special relationship to a common point or
plane. [1]

1.2 The Scene Graph

The scene graph is the emergent object-oriented hierarchical data
structure for describing geometric relationships, appearance, and
behavior in computer generated virtual reality worlds. It is an
acyclic tree, meaning that each branch has a single attachment
point, and therefore, it cannot form closed loops. The Java 3D
API Specification [3] describes the construction of the scene graph
tree, which uses BranchGroup nodes and TransformGroup nodes
to connect the branches and uses Leaf Nodes to contain informa-
tion such as geometric shapes, appearance, lighting, and behavior.

Throughout, this paper uses a particular example from classi-
cal mechanics to illustrate the general methods. The four bar link-
age, a particular class of planar, determinate, single loop closed
kinematic chains, has been the focus of study by mathematicians,
philosophers, royalty and engineers for centuries, and, respecting
tradition, this paper will employ it as the concrete example. The
following describes how the scene graph can be used to describe
its geometry and connectivity.

angle_B

angle_C

angle_A

ab

bc

cd

da

C

AB

DA

Figure 1. Four bar linkage.
Figure 1 shows a common configuration of a four bar linkage.

Rigid links AB, BC, CD, DA are connected by hinged joints (A,

Copyright J. F Klingener , Brock Engineering 2000
May be printed or copied intact for personal use.

December 5, 2000 web publish www.VMech.com

B, C, D); one of the links (DA) is considered to be fixed to a foun-
dation, one link is considered to be a driver or input link (AB), the
adjacent link is a connector or drag link (BC), and the last, the
driven link or the output. (CD).

Figure 2 shows how a scene graph could be used to represent
the geometric arrangement of the links of a four bar linkage. The
Shape Leaf Nodes represent the geometries and visual properties
of the individual links themselves, the Branch and Transform
Group Nodes describe the structure of the tree that defines the
geometric relationship between them, and the Behavior Leaf Node
gives motivation to the input link AB.

The central failings of the bare scene graph are apparent from
the figure. While the Behavior node can set the transformation for
joint A by setting the independent variable angle_A, and the
lengths of the rigid links ab, bc, and cd determine the translations,
the rotations at joints B and C are unknown, and the requirement
that the ‘D’ end of the link CD engage the joint D fixed on the
base remains unexpressed on the tree’s acyclic topology.

Behavior Leaf Node

Key:

BG TG

S B

BranchGroup Node TransformGroup Node

Shape Leaf Node

rotate (angle_C)

rotate (angle_A)

translate (ab)

rotate (angle_B)

translate (bc)

S

S

S

Link AB

Link BC

Link CD
TG

TG

TG

TG

TG

BGB View and Lighting

root

Input shaft driver

Figure 2. A four bar linkage on a Java 3D scene graph

2 APPROACH

This section describes a three-pronged approach to using inverse
kinematics for solving external constraints on an animated mecha-
nism model in Java 3D™. The first sub-section describes the
mathematical background, the solution sequence, and the organiza-
tion of the scene graph model, the second describes the approach
to creating a Constraint class to organize and expedite geometric
calculations in support of the solution, and the third sub-section
describes the standard way that simple Java 3D™ models are
animated, the inherent problems, and an approach to modifications
necessary to permit stable and efficient computation.

2.1 Solving External Constraints
Typically, constraints can be expressed in a number of equations
or inequalities that describe the relationship among machine parts
or between machine parts and the foundation. This paper consid-

ers a subset of constraints that can be expressed in equations
whose terms are time-independent. The example has constraints
that set displacements of a mechanism part equal to zero relative
to a fixed foundation point. Further, the determinate mechanism
discussed in this paper has an equal number of dependent vari-
ables that can be set to satisfy those equations. The mathematical
problem then reduces to solving N nonlinear equations in N un-
knowns.

Fi(x1, x2, x3, … xN) = 0 i = 1…N (1)

where F is a function of x, the dependent variables. For very sim-
ple mechanisms, the equations can be solved from quadratic or
trigonometric closed forms, but numerical marching techniques are
preferable for mechanisms of any complexity.

Press et al. [2] describe the Newton-Raphson method, sim-
plest of the numerical techniques for solving sets of simultaneous
nonlinear equations. The method begins with an initial guess for
the dependent variables (xj), measures the resulting values of the
functions F, calculates and applies a change to the dependent vari-
ables and repeats to convergence.

In the general case, the equation set (1) can be particularly
troublesome when it represents kinematic constraints, because it
may have many, one, or no solutions. According to Press, there
are no good methods to find global solutions to the set, and ac-
cordingly, the methods described here are applicable only to
mechanisms for which there are known solutions and only to sta-
ble regions for those mechanisms.

The key to stability and rapid convergence is an initial guess
not too far from the final result. The changes required to the de-
pendent variables are estimated by estimating the local derivatives
of Fi with respect to xj, then using them to compute the new xj
required to drive Fi to zero. The derivatives ∂Fi/∂xj are measured
by incrementing each xj in turn and measuring the changes to F.
The N×N matrix ∂Fi/∂xj is called the Jacobian, J. In vector form:

F(x + δx) = F(x) + J × δx + (higher order terms) (2)

Setting F(x + δx) = 0 to satisfy the constraint equations, and ne-
glecting higher order terms

J × δx = -F(xold),

which is a set of N linear equations in N unknowns. It may be
solved for δx by one of several different methods, such as direct
inversion of the Jacobian

xnew = xold + δx
xnew = xold + J-1× (-F(xold)), (3)

and the steps are repeated until F(xold) are sufficiently close to 0.
For a high fidelity simulation, this procedure is executed and the
dependent variables are set prior to the rendering of each frame.

2.2 The Constraint Class

The approach to designing the Constraint class is motivated by
the need to close the loops left open on the scene graph and by the
desire to organize and encapsulate the methods required to meas-
ure the constraint mismatches and the elements of the Jacobian
described in sub-section 2.1 First, the Constraint class can be
used to close a loop on the scene graph by extending (subclassing)
Group so that it can itself be placed as a component on the scene
graph (to fix the geometric frame of reference in which the con-
straint displacements are to be measured), and by containing, as a
member, a reference to another scene graph Node (to identify the
position of the constraint’s mating part). Second, a Constraint

instance can exploit the computational power of Java 3D in the
following way. Because a Constraint instance and its referenced
Node each have particular positions in space by virtue of their
positions on the scene graph, their relative positions (usually the
mismatch between the current and desired displacements at the
constraints) can be readily extracted by a few simple calls to Node
geometry methods.

2.3 Java 3D™ Animations

The Java 3D™ API supports some types of simple animations.
Interpolator objects, for instance, are subclasses of Behavior, so
not only can they monitor the system clock and provide smooth
and continuous modification of TransformGroups that set the
independent variables of a scene, but they can also control other
parts of the scene (such as computation of the dependent vari-
ables) by means of overrides of their initialize() and
processStimulus() methods.

However their design details make the standard Interpolators
unsuitable. Because their time base (and thus the motion they
impart to their target scene objects) is rooted in the system clock,
the interpolated motion they impart can proceed completely inde-
pendently of the rendering. While the CPU is off resizing win-
dows, for example, the independent input variables of the invisible
mechanism are advancing, while the Interpolator’s process-
Stimulus() method remains uncalled.

Sub-section 2.1 described the usefulness of Newton-Raphson
method of iteratively updating the dependent variables for each
rendering frame by taking, as the initial guess, the values of the
dependent variables from the immediately prior frame. But the
stability and convergence of the method depended on the close
proximity of the initial guess to the final answer. Clearly, large
jumps must be avoided.

The solution is a new Behavior class that creates and main-
tains its own simulation clock that advances by increments in the
processStimulus() method. In this way, the scene’s inde-
pendent variables do not advance unless the processStimu-
lus() method is called, and as a result, the dependent variables
from the last time step are appropriate as initial guesses for the
Newton-Raphson method.

3 IMPLEMENTATION

Figure 3 shows a scene graph that represents the four bar linkage
of Figure 2 with the changes required to control it and to resolve
the constraints. Figure 3 uses solid lines to connect tree parts in
the usual way. The dotted lines indicate functional interactions
among parts, and the boxes with the grayed boundaries identify
special classes along with the numbers of the sub-sections in
which they are discussed here. The figure shows the spine of the
linkage down the left hand side, with the behavior setting the in-
dependent variable angle_A as before. The kinematic constraint is
reflected in the closed loop formed on the right hand side by a
Constraint object, PinD, mounted on the scene graph and refer-
encing the D end of the link CD.

The dotted lines identify interactions among the objects,
along with an identification of the process step (described below)
in which they are active. The solution of the inverse kinematics
occurs before rendering each frame, and it proceeds with the fol-
lowing steps:
step 1.) the MachineController object (a Behavior) wakes
up, updates its simulation clock, resets its wakeup alarm, reads its
interpolator, sets the new value of the independent variable an-
gle_A, and then in step 2.) calls the FourBarLinkage method
solve(). In step 3.), that solve() method performs the cal-
culations needed to solve the constraints. That step is divided

into three sub-steps. In step 3a.), the Constraint object re-
ports the mismatch at the constraint for the initial guess. In step
3b.) the solve() method increments the dependent transforms
in turn, and the Constraint object reports the resulting dis-
placement changes in step 3c.) The solve() method then com-
poses the Jacobian, inverts it, multiplies by the negative of the
original mismatch, and in step 4.), it sets the dependent variables
to their fresh values.

MachineController
Section 3.3

Constraint
Section 3.2

Key:

BG

TG

S B

BranchGroup Node

Independent
TransformGroup Node

Shape Leaf Node

View and Lighting

S

Link BC

Link CD

CO Constraint Node

TG Dependent
TransformGroup Node

translate (da)

translate(cd)

PinD

D end of
Link CD

rotate (angle_A)

rotate (angle_B)

rotate (angle_C)

translate(ab)

translate(bc)

Behavior Leaf Node

Link AB

solve()

S

S

FourBarLinkage
Section 3.1

TG

TG

TG

TG

TG
TG

TG

BG

BG

root

BG

step 2

step 1

steps
3b, 4

B

steps
3a, c

CO

Figure 3. Scene Graph with Constraints

The following sub-sections describe the classes required - outlining
their inheritance and the additional members and methods required.
Section 3.1 describes the construction of the model itself and its
solve() method, section 3.2 the Constraint class, and sec-
tion 3.3 the Behavior that controls its operation.

3.1 The FourBarLinkage Class

Section 2.1 described the mathematical underpinnings of the ap-
proach to solution of the inverse kinematics constraint equations.
This section describes the implementation details for the example

four bar linkage shown on Figure 1. The FourBarLinkage
class extends BranchGroup, constructs the mechanism parts, sets
the appropriate capability bits, and assembles them in the usual
way. It has an initialize() method that can be called from
the MachineController’s initialize() method. The meat of
the class, though, is its solve() method. Called each frame by the
MachineController’s processStimulus() method after that
method has set the new independent state variables, solve()
finds the roots of the constraint equations and sets the independ-
ent variables.

In our example linkage, when the solve()method receives
the mechanism, the independent variable (angle_A) has been set to
the next frame, the dependent variables (angle_B and angle_C)
remain as they were for the last, and there are, in general, dis-
placement mismatches, mx and my in the x and y directions at the
constraint point D. Before the frame can be rendered properly,
this displacement mismatch must be eliminated by finding new
values for angle_B and angle_C, and the corresponding Trans-
formGroups must be set. The condition of the mechanism, then,
is ready for the Newton-Raphson method.

The four bar linkage has one independent variable, angle_A,
two dependent variables, angle_B and angle_C, and two con-
straint conditions Dx = 0 and Dy = 0, where Dx and Dy are the
displacements in the x and y directions of the ‘D’ end of link CD
with respect to the foundation point D. Equations (1) for the four
bar linkage become:

Dx angle B angle C
Dy angle B angle C

(_ , _)
(_ , _)

=
=

0
0

Recalling that the Jacobian has one row for each constraint
condition and one column for each dependent variable, the Jaco-
bian for the example four bar linkage is a square 2 × 2 matrix with
the form

J
Dx angle B Dx angle C
Dy angle B Dy angle C

=
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

/ (_) / (_)
/ (_) / (_)

The elements may be approximated empirically on the scene
graph itself by first incrementing angle_B by some known
∆(angle_B), reading the resulting change in Dx and Dy, thus ob-
taining the first column of the Jacobian, and second by resetting
angle_B, and incrementing angle_C by some ∆(angle_C) and
measuring the resulting ∆Dxc and ∆Dyc to obtain the entries for
the second column. The resulting approximate Jacobian has the
form:

J
Dxb angle B Dxc angle C
Dyb angle B Dyc angle C

≈
∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

/ (_) / (_)
/ (_) / (_)

For illustrative purposes, the required adjustments to the to
the dependent variables correction_B and correction_C are solved
by inverting the Jacobian and multiplying it by the negative of the
original mismatch.

correction B
correction C

J
mx
my

_
_

= ×
−
−

−1

After the corrections are made to the TransformGroups corre-
sponding to the dependent variables, the displacement mismatch is
measured again, and the procedure is repeated to convergence.

The following is a code outline for the procedure. Incre-
mentTG(T, dz) is a FourBarLinkage method that rotates the
angle corresponding to TransformGroup, T a small angle dz.
The getXYVector() method is described in sub-section 3.2. The

procedure within the do loop is repeated until the measured
mismatch is sufficiently small. In the following listing, the step
numbers refer to steps described in section 3.0.

public void solve() {
 do {
// step 3a - get mismatch:
 mismatch.set(PinD.getXYVector(1.0, zero));
// step 3b for angles B and C.
 double s = 100.0; // scale for the angle
// compute deltaDxb and deltaDyb and put them
// into the first column of the Jacobian
// step 3b for angle B
 IncrementTG(B, 1.0/s);
// step 3c for angle B
 Jacobian.setColumn(0, PinD.getXYVector(s,
 mismatch));
 IncrementTG(B, -1.0/s);
// compute deltaDxc and deltaDyc and put them
// into the second column of the Jacobian
// step 3b for angle C
 IncrementTG(C, 1.0/s);
// step 3c for angle C
 Jacobian.setColumn(1, PinD.getXYVector(s,
 mismatch)); // units: m/radian
 IncrementTG(C, -1.0/s);
// invert the Jacobian in place
 Jacobian.invert(); // units: radian/m
// then solve for dB and dC
 mismatch.negate(); // units: m
// calculate correction
 correction/*radians*/.mul(Jacobian
 /*radians/m*/, mismatch/*m*/);
// correction now is dB, dC in radians
// step 4
 IncrementTG(B, correction.getElement(0));
 IncrementTG(C, correction.getElement(1));
// Check the result
} while(mismatch.normSquared()>1.0e-10);
}

3.2 The Constraint Class

Because the Constraint class extends Java 3D™ class Group, it
can be mounted on a scene graph in a particular location. It has, as
a member called MatingPart, a reference to a node on another part
to which it is to be constrained. Along with the usual array of
utility methods, it has a getNetTransform(), which returns, as a
the Transform3D, the net transformation of points in the coordi-
nate system of the MatingPart node with respect to the coordi-
nate system of the Constraint instance. The method exploits the
Java 3D™ Node method getLocalToVWorld(t), which places in
parameter t, the net transform from the root to this Node. The
core of the method follows:

public Transform3D getNetTransform() {
// get transform from this to the root
 Transform3D refT3D = new Transform3D();
 this.getLocalToVworld(refT3D);
// get transform from MatingPart to root
 Transform3D mpT3D = new Transform3D();
 MatingPart.getLocalToVworld(mpT3D);
// transform from root to this
 refT3D.invert();
// transform from MatingPart to this
 refT3D.mul(mpT3D);

 return refT3D;
 }

Then the model’s solve() method can obtain the vector dis-
placement of the origin of the MatingPart measured in the coor-
dinate frame of the Constraint instance with a simple call:

Vector3d v = new Vector3d();
PinD.getNetTransform().get(v);

Because the mechanism’s solve() method uses the Java 3D™
vecmath library classes GVector and GMatrix for calculation of
the updates, it makes sense to offer returns in this form too. In
the example planar four bar linkage, the PinD has two constraint
displacements in the x and y directions, and the following method
returns columns of the Jacobian, scaled by s as a Gvector (the
parameter mismatch is the displacement GVector calculated from
the initial guess):

public GVector getXYVector(double s, Gvector
 mismatch) {
 Vector3d v = getDisplacementVector();
 GVector ret = new GVector(2);
 ret.setElement(0, s*(v.x -
 mismatch.getElement(0)));
 ret.setElement(1, s*(v.y -
 mismatch.getElement(1)));
// return the Gvector
 return ret;
}

3.3 The MachineController

Section 2.3 described the way that the standard Java 3D™ Inter-
polators work, why they were unsuitable for the present purpose,
and the approach to fixing them. This section describes the Ma-
chineController, which implements that approach. The Ma-
chineController extends Behavior, and it mimics the standard
Interpolator behavior but with its own clock. First, it has the
fields required to create and maintain an independent simulation
clock:

private long simulationClock;
private int time_step;
private WakeupOnElapsedTime yawn;

and second, the initialize() and the processStimulus()
methods required by the Behavior class:

public void initialize() {
 simulationClock = 0;
 time_step = 45; // milliseconds
 yawn = new WakeupOnElapsedTime(time_step);
 wakeupOn(yawn);
 [FourBarLinkage instance].initialize();
 …}
public void processStimulus(Enumeration e) {
// do the required housekeeping
 simulationClock += time_step;
 wakeupOn(yawn);
// then call
 [FourBarLinkage instance].solve()
 …}

By exercising control over the advance of the simulation clock at
the same time that the simulation model is advanced, this class
ensures that successive model states are sufficiently close, ensur-

ing in turn, the stability and convergence of the iterative solution
of the constraint conditions.

4.0 SUMMARY

This paper proposed a general approach to ‘closing the loop’ on a
scene graph to support solution of inverse kinematic constraints,
but it used specialized methods to solve a particular example
problem. While the general approach may be applicable to a broad
spectrum of fields, the detailed methods must be adapted to spe-
cial field. For example, analytical (as opposed to numerical)
methods offer high performance in computer animation but may
require special kinematic structure [4]. Where the Jacobian is used
to express the relationship between dependent variables and dif-
ferential displacements at constraints, preferences for solution
methods depend on the need for speed balanced against the accu-
racy requirements, the system redundancy, and the potential for
the existence of singularities. Welman [5] describes methods based
on the cheaper transpose of the Jacobian and a complementary
heuristic approach that seeks to minimize displacement mis-
matches by varying one dependent variable at a time. The Java
3D API gives high-level access to many performance-tuned geo-
metric methods, but also restricts user access to some details of
the scene graph on which established solver methods rely.

Mechanism animations using the techniques described in this
paper may be viewed as Java applets at VMech.com.

REFERENCES

[1] McCarthy, J. M., Introduction to Theoretical
Kinematics, The MIT Press, Cambridge, MA,
1990, ISBN 0-262-13252-4

[2] Press, et al.,Numerical Recipes in C,
(http://www.nr.com) The Art of Scientific Com-
puting, Second Edition, Cambridge University
Press, 1992.

[3] Sowizral, Henry, Kevin Rushforth, Michael Deer-
ing, The Java™ 3D API Specification
(http://www.javasoft.com/products/java-
media/3D/forDevelopers/J3D_1_2_API/j3dguide/in
dex.html), Addison-Wesley, Reading Massachu-
setts, 1995 ISBN 0-201-32576-4

[4] Tolani, Deepak, Ambarish Goswami, Norman I.
Badler, Real-time inverse kinematics techniques for
anthropomorphic limbs,(http://hms.upenn.edu/
software/ik/ikan_gm.pdf)Graphical Models, Vol.
62, No. 5, September 2000 Pg 353-388

[5] Welman, Chris, Inverse kinematics and geometric
constraints for articulated figure manipulation,
Master of Science Thesis, School of Computing
Science, Simon Fraser University, September 1993
(available via ftp as a WinZipped PostScript file
here (ftp://fas.sfu.ca/pub/cs/theses/1993/
ChrisWelmanMSc.ps.gz))

WEBLIOGRAPHY

[a] Yi Zhang with Susan Finger and Johannie Behrens,
Introduction to Mechanisms
(http://www.cs.cmu.edu/~rapidproto/mechanisms/
chpt1.html), Carnegie Mellon University, course
notes 39-245 Design through Virtual and Physical
Prototyping, Spring 1997.

[b] Bill Baxter,
Fast Numerical Methods for Inverse Kinematics, (
http://www.cs.unc.edu/~baxter/courses/290/html/
img0.htm) Course notes, Comp 290-72, Univer-
sity of North Carolina, Department of Computer
Science, February, 2000.

[c] Michael Wagner, Advanced Animation Techniques
in VRML 97
(http://vienna.eas.asu.edu/~wagner/academic/
vrml98/), Arizona State University,

[d] Sebastian Grassia, Inverse Kinematics
(http://www.cs.cmu.edu/afs/cs.cmu.edu/user/spiff/
www/physmod95/siggraph95-slides.pdf),
SIGGRAPH 95 slides, Physically Based Modeling,
Carnegie Mellon University, School of Computer
Science.

[e] Introduction to Inverse Kinematics,

[f] Jianmin Zhao and Norman I.
Badler, Inverse kinematics positioning using non-

linear programming for highly articulated figures,
ACM Transactions on Graphics, Volume 13, Issue
4 (1994)

OTHER SOURCES

[a] H-ANIM, Humanoid Animation Working Group,
Specification.

[b] IKAN, Inverse Kinematics using ANalytical
Methods, Norman I. Badler, University of Penn-
sylvania.

