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Abstract

Kinematics, the study of the motion of bodies without regard to
their masses or the forces causing their motion, has been around
for centuries. The scene graph is the emergent standard hierarchca
data structure for computer modeling of three dimensiona worlds,
but kinematic models of machines or mechanisms that have exte-
nal constraints or constraints that span interior nodes do not sit
comfortably on its open-branched tree topology. Methods that
have been developed to solve the kinematics of a constrained
model tend to work backwards down the scene graph’s branches
from leaf to root, and the term "inverse kinematics' has been at-
tached to them.

Inverse kinematics solvers have long been fixtures in compu-
tational modeling with particular activity in robotics, in human
figure animation, and in proprietary CAD and machine design
software. This paper describes a general approach to solving in-
verse kinematics on the Java3D™ scene graph and illustrates the
approach using a particular example from classical mechanics with
afocus on methods suitable for high fidelity smulation of con-
tinuous processes.
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1 INTRODUCTION

1.1 Kinematics

Kinematics studies the geometric properties of the motion of
points without regard to their masses or to the forces acting on
them. A set of points with the property that the distances be-
tween any two of them never variesis called a rigid body or rigid
link. The position of a rigid body in space is defined by six di-
mensions, three translations and three rotations. A kinematic
chainis a set of links connected by joints that constrain their rela-
tive movement. An open chain is aset of links (such as acommon
industrial robot) with one end attached to arigid base . A closed
chain may be attached to a rigid base in more than one place. A
single loop closed chain attached at each end is commonly called a
mechanism.

The gtate of a mechanism is the set of properties needed to

Copyright J. F Klingener , Brock Engineering 2000
M ay be printed or copied intact for personal use

December 5, 2000 web publish www.VMech.com

completely determine the positions of all of its constituent parts.
These properties are called independent state variables, and their
count determines a mechanism’s degrees of freedom. Constraints
are limitations on the motion of a mechanism or of its constituent
parts. A number of dependent variables may be required to de
termine the relative positions of a mechanism'’s parts, and they are
derived from the independent variables and the external con-
draints. A determinate mechanism has the property that the
number of dependent variables is equa to the number of externa
constraint conditions.

The links of a planar mechanism are constrained to movein a
plane parallel to a base plane, usualy by hinged joints whose axes
lie perpendicular to the base plane. The axes of hinged joints of a
spherical mechanism all intersect at a point. Joints of spatial
mechanisms have no special relationship to a common point or
plane. [1]

1.2 The Scene Graph

The scene graph is the emergent object-oriented hierarchica data
structure for describing geometric relationships, appearance, and
behavior in computer generated virtua reality worlds. It is an
acyclic tree, meaning that each branch has a single attachment
point, and therefore, it cannot form closed loops. The Java 3D
API Specification [3] describes the construction of the scene graph
tree, which uses BranchGroup nodes and TransformGroup nodes
to connect the branches and uses Leaf Nodes to contain informa
tion such as geometric shapes, appearance, lighting, and behavior.

Throughout, this paper uses a particular example from classi-
cal mechanicsto illustrate the general methods. The four bar link-
age, a particular class of planar, determinate, single loop closed
kinematic chains, has been the focus of study by mathematicians,
philosophers, royalty and engineers for centuries, and, respecting
tradition, this paper will employ it as the concrete example. The
following describes how the scene graph can be used to describe
its geometry and connectivity.

/

Figure 1. Four bar linkage.
Figure 1 shows a common configuration of a four bar linkage.
Rigid links AB, BC, CD, DA are connected by hinged joints (A,



B, C, D); one of the links (DA) is considered to be fixed to a foun-
dation, onelink is considered to be adriver or input link (AB), the
adjacent link is a connector or drag link (BC), and the last, the
driven link or the output. (CD).

Figure 2 shows how a scene graph could be used to represent
the geometric arrangement of the links of a four bar linkage. The
Shape Leaf Nodes represent the geometries and visual properties
of the individua links themselves, the Branch and Transform
Group Nodes describe the structure of the tree that defines the
geometric relationship between them, and the Behavior Leaf Node
gives motivation to the input link AB.

The central failings of the bare scene graph are apparent from
the figure. While the Behavior node can set the transformation for
joint A by setting the independent variable angl e_A and the
lengths of therigid links ab, bc, and cd determine the translations,
the rotations at joints B and C are unknown, and the requirement
that the ‘D’ end of the link CD engage the joint D fixed on the
base remains unexpressed on the tree’ s acyclic topology.
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rotate (angle_A) e A Link AB

- Link BC

- Link CD

BranchGroup Node @ TransformGroup Node
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Figure2. A four bar linkageon aJava 3Da scenegraph
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2 APPROACH

This section describes a three-pronged approach to using inverse
kinematics for solving external constraints on an animated mecha
nism model in Java 3D™. The first sub-section describes the
mathematical background, the solution sequence, and the organiza
tion of the scene graph model, the second describes the approach
to creating a Constraint class to organize and expedite geometric
calculations in support of the solution, and the third sub-section
describes the standard way that simple Java 3D™ models are
animated, the inherent problems, and an approach to modifications
necessary to permit stable and efficient computation.

2.1 Solving External Constraints

Typically, constraints can be expressed in a number of equations
or inequalities that describe the relationship among machine parts
or between machine parts and the foundation. This paper consid-

ers a subset of constraints that can be expressed in equations
whose terms are time-independent. The example has constraints
that set displacements of a mechanism part equal to zero relative
to a fixed foundation point. Further, the determinate mechanism
discussed in this paper has an equal number of dependent vari-
ables that can be set to satisfy those equations. The mathematical
problem then reduces to solving N nonlinear equations in N un-
knowns.

Fi(X]_, Xy X3, ... XN) =0 i=1.N (l)

where F isafunction of x, the dependent variables. For very sim-
ple mechanisms, the equations can be solved from quadratic or
trigonometric closed forms, but numerical marching techniques are
preferable for mechanisms of any complexity.

Press et al. [2] describe the Newton-Raphson method, sim-
plest of the numerical techniques for solving sets of simultaneous
nonlinear equations. The method begins with an initial guess for
the dependent variables (x), measures the resulting values of the
functions F, calculates and applies a change to the dependent vari-
ables and repeats to convergence.

In the genera case, the equation set (1) can be particularly
troublesome when it represents kinematic constraints, because it
may have many, one, or no solutions. According to Press, there
are no good methods to find global solutions to the set, and a-
cordingly, the methods described here are applicable only to
mechanisms for which there are known solutions and only to sta-
ble regions for those mechanisms.

The key to stability and rapid convergence is an initial guess
not too far from the final result. The changes required to the de-
pendent variables are estimated by estimating the local derivatives
of F; with respect to x, then using them to compute the new X
required to drive F; to zero. The derivatives TF/fx are measured
by incrementing each X in turn and measuring the changes to F.
The N” N matrix TF/fx; is called the Jacobian, J. In vector form:

F(x + dx) = F(x) + 3~ dx + (higher order terms) 2

Setting F(x + dx) = O to satisfy the constraint equations, and ne-
glecting higher order terms

37 =-F(Xaq),

which isaset of N linear equations in N unknowns. It may be
solved for dx by one of severa different methods, such as direct
inversion of the Jacobian

Xnew = Xold + X
Xnew = Xaid + I (-F(Xoiq)), (3

and the steps are repeated until F(xyg) are sufficiently close to 0.
For a high fidelity simulation, this procedure is executed and the
dependent variables are set prior to the rendering of each frame.

2.2 The Constraint Class

The approach to designing the Constraint class is motivated by
the need to close the loops |eft open on the scene graph and by the
desire to organize and encapsulate the methods required to meas-
ure the constraint mismatches and the elements of the Jacobian
described in sub-section 2.1 First, the Constraint class can be
used to close a loop on the scene graph by extending (subclassing)
Group so that it can itself be placed as a component on the scene
graph (to fix the geometric frame of reference in which the con-
straint displacements are to be measured), and by containing, as a
member, a reference to another scene graph Node (to identify the
position of the constraint’s mating part). Second, a Constraint



instance can exploit the computational power of Java3Da in the
following way. Because a Constraint instance and its referenced
Node each have particular positions in space by virtue of their
positions on the scene graph, their relative positions (usually the
mismatch between the current and desired displacements at the
constraints) can be readily extracted by afew simple callsto Node
geometry methods.

2.3 Java 3D™ Animations

The Java 3D™ API supports some types of simple animations.
Interpolator objects, for instance, are subclasses of Behavior, so
not only can they monitor the system clock and provide smooth
and continuous modification of TransformGroups that set the
independent variables of a scene, but they can aso control other
parts of the scene (such as computation of the dependent vari-
ables) by means of overrides of their initialize() and
processStinmul us() methods.

However their design details make the standard Interpolators
unsuitable. Because their time base (and thus the motion they
impart to their target scene objects) is rooted in the system clock,
the interpolated motion they impart can proceed completely inde-
pendently of the rendering. While the CPU is off resizing win-
dows, for example, the independent input variables of the invisible
mechanism are advancing, while the Interpolator’s process-
Sti mul us() method remains uncalled.

Sub-section 2.1 described the usefulness of Newton-Raphson
method of iteratively updating the dependent variables for each
rendering frame by taking, as the initial guess, the values of the
dependent variables from the immediately prior frame. But the
stability and convergence of the method depended on the close
proximity of the initial guess to the fina answer. Clearly, large
jumps must be avoided.

The solution is a new Behavior class that creates and main-
tains its own simulation clock that advances by increments in the
processSti mul us() method. In this way, the scene's inde-
pendent variables do not advance unless the processSti mu-
I us() method is called, and as a result, the dependent variables
from the last time step are appropriate as initial guesses for the
Newton-Raphson method.

3 IMPLEMENTATION

Figure 3 shows a scene graph that represents the four bar linkage
of Figure 2 with the changes required to control it and to resolve
the constraints. Figure 3 uses solid lines to connect tree parts in
the usual way. The dotted lines indicate functional interactions
among parts, and the boxes with the grayed boundaries identify
specia classes aong with the numbers of the sub-sections in
which they are discussed here. The figure shows the spine of the
linkage down the left hand side, with the behavior setting the in-
dependent variable angle_A as before. The kinematic constraint is
reflected in the closed loop formed on the right hand side by a
Constraint object, Pi nD, mounted on the scene graph and refer-
encing the D end of thelink CD.

The dotted lines identify interactions among the objects,
along with an identification of the process step (described below)
in which they are active. The solution of the inverse kinematics
occurs before rendering each frame, and it proceeds with the fol-
lowing steps:
step 1.) the Machi neControl | er object (a Behavior) wakes
up, updates its simulation clock, resets its wakeup alarm, reads its
interpolator, sets the new value of the independent variable an-
gle A, and then in step 2.) cals the Four Bar Li nkage method
sol ve(). Instep 3.), that sol ve() method performs the cal-
culations needed to solve the constraints. That step is divided

into three sub-steps. In step 3a.), the Constrai nt object re-
ports the mismatch at the constraint for the initial guess. In step
3b.) the sol ve() method increments the dependent transforms
in turn, and the Constrai nt object reports the resulting dis-
placement changesin step 3c.) The sol ve() method then com-
poses the Jacobian, inverts it, multiplies by the negative of the
original mismatch, and in step 4.), it sets the dependent variables

to their fresh values.
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Figure 3. Scene Graph with Constraints
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The following sub-sections describe the classes required - outlining
their inheritance and the additional members and methods required.
Section 3.1 describes the construction of the model itself and its
sol ve() method, section 3.2the Constrai nt class, and sec-
tion 3.3 the Behavior that controlsits operation.

3.1 The FourBarLinkage Class

Section 2.1 described the mathematical underpinnings of the @-
proach to solution of the inverse kinematics constraint equations.
This section describes the implementation details for the example



four bar linkage shown on Figure 1. The Four Bar Li nkage
class extends BranchGroup, constructs the mechanism parts, sets
the appropriate capability bits, and assembles them in the usual
way. Ithasaninitialize() method that can be caled from
the Machi neControl ler’sinitialize() method. The meat of
the class, though, isitssol ve() method. Called each frame by the
Machi neControl | er’s processStimul us() method after that
method has set the new independent state variables, sol ve()
finds the roots of the constraint equations and sets the independ-
ent variables.

In our example linkage, when the sol ve() method receives
the mechanism, the independent variable (angle_A) has been set to
the next frame, the dependent variables @ngle B and angle C)
remain as they were for the last, and there are, in generd, dis-
placement mismatches, mx and my in the x and y directions at the
constraint point D. Before the frame can be rendered properly,
this displacement mismatch must be eliminated by finding new
values for angle B and angle C, and the corresponding Trans-
formGroups must be set. The condition of the mechanism, then,
isready for the Newton-Raphson method.

The four bar linkage has one independent variable, angle A,
two dependent variables, angle B and angle C, and two con-
straint conditions Dx = 0and Dy = 0, where Dxand Dy are the
displacements in the x and y directions of the ‘D’ end of link CD
with respect to the foundation point D. Equations (1) for the four
bar linkage become:

Dx(angle_B,angle_C)=0
Dy(angle_B,angle_C)=0

Recalling that the Jacobian has one row for each constraint
condition and one column for each dependent variable, the Jaco-
bian for the example four bar linkageisasquare2” 2 matrix with
theform

_|TDx/1(angle_B) 1Dx/f(angle_C)
~|Dy/f(angle_B) fDy/T(angle_C)

The elements may be approximated empiricaly on the scene
graph itself by first incrementing angle B by some known
D(angle_B), reading the resulting change in Dx and Dy, thus ob-
taining the first column of the Jacobian, and second by resetting
angle B, and incrementing angle C by some D(angle C) and
measuring the resulting DDxc and DDyc to obtain the entries for
the second column. The resulting approximate Jacobian has the
form:

DDxb/D(angle_B) DDxc/ D(angle_C)
»
DDyb/D(angle_B) DDyc/ D(angle_C)

For illustrative purposes, the required adjustments to the to
the dependent variables correction_B and correction_C are solved
by inverting the Jacobian and multiplying it by the negative of the
original mismatch.

— 1-1-

correction_B
correction_C

- my|
After the corrections are made to the TransformGroups corre-
sponding to the dependent variables, the displacement mismatch is
measured again, and the procedure is repeated to convergence.

The following is a code outline for the procedure. | ncre-
ment TQ T, dz) isaFour Bar Li nkage method that rotates the

angle corresponding to Tr ansf or @ oup, T asmal angle dz.
The get XYVect or () method is described in sub-section 3.2. The

procedure within the do loop  isrepeated until the measured
mismatch is sufficiently small. In the following listing, the step
numbers refer to steps described in section 3.0.

public void solve() {
do {
/1l step 3a - get msnatch:
m smat ch. set (Pi nD. get XYVector (1.0, zero));
/1 step 3b for angles B and C
double s = 100.0; // scale for the angle
/1 conpute deltabDxb and del taDyb and put them
/1 into the first colunn of the Jacobian
/1 step 3b for angle B
I ncrement T B, 1.0/s);
/1l step 3c for angle B
Jacobi an. set Gol um( 0, Pi nD. get XYVect or (s,
m snat ch) ) ;
Increnent T B, -1.0/s);
/1 conpute deltabxc and del taDyc and put them
/1 into the second col um of the Jacobi an
/1 step 3b for angle C
Increment T C 1.0/s);
/1 step 3c for angle C
Jacobi an. set Gol um( 1, PinD. get XYVector (s,
m snat ch) ) ; /] units: miradian
Increnent T C -1.0/s);
/1 invert the Jacobian in place
Jacobi an.invert(); // units: radian/m
/1 then solve for dB and dC
m smat ch. negat e() ; /] units: m
/1 calculate correction
correction/*radi ans*/. mul (Jacobi an
/*radi ans/ n¥/, msmatch/*nt/);
/1 correction nowis dB, dCin radians
/1 step 4
I ncrenent T@ B, correction. getH enent (0));
I ncrenent T C correction.getH enent(1));
/1l Check the result
whi | e(m smat ch. nor nBquar ed() >1. Oe- 10) ;

3.2 The Constraint Class

Because the Const r ai nt class extends Java3D™ class @ oup, it
can be mounted on a scene graph in aparticular location. It has, as
amember called Mat i ngPart, areference to a node on another part
to which it isto be constrained. Along with the usual array of
utility methods, it hasaget Net Tr ansf or n{), which returns, asa
the Tr ansf or n8D, the net transformation of pointsin the coordi-
nate system of the Mat i ngPart node with respect to the coordi-
nate system of the Constraint instance. The method exploits the
Java 3D™ Node method get Local ToWwr | d(t), which placesin
parameter t, the net transform from the root to this Node. The
core of the method follows:

publ i ¢ Transforn8D get Net Tr ansf or n{) {

/1 get transformfromthis to the root
Transforn8D ref T3D = new Transf or n8)) ;
t hi s. get Local TowWwor | d(ref T3D);

/1 get transformfrom MatingPart to root
Transf or 8D npT3D = new Transf or n8() ;
Mat i ngPart . get Local ToWwor | d( npT3D) ;

/1 transformfromroot to this
ref T3D. i nvert();

/1 transformfromMatingPart to this
ref T3D. mul (npT3D) ;



return ref T30,
}

Then themodel’s sol ve() method can obtain the vector dis-
placement of the origin of the Mat i ngPart measured in the coor-
dinate frame of the Const r ai nt instance with asimple call:

Vector3d v = new Vector3d();
Pi nD. get Net Transforn() . get (v);

Because the mechanism’'s sol ve() method uses the Java3D™
vecmath library classes Gvect or and Qvatri x for calculation of
the updates, it makes sense to offer returns in this form too. In
the example planar four bar linkage, the Pi nD has two constraint
displacements in the x and y directions, and the following method
returns columns of the Jacobian, scaled by s as a Grector (the
parameter m snat ch is the displacement Gvect or calculated from
theinitia guess):

publ i c Gv/ector get XYVector (doubl e s, Grector
m smat ch) {
Vector3d v = get D spl acenent Vector () ;
Gvector ret = new Gv/ector (2);
ret.setB ement (0, s*(v.x -
m snat ch. get Bl enent (0)));
ret.setB ement (1, s*(v.y -
m snat ch. get B erent (1) ) ) ;
/1 return the Grector
return ret;
}

3.3 The MachineController

Section 2.3 described the way that the standard Java3D™ Inter-
polators work, why they were unsuitable for the present purpose,
and the approach to fixing them. This section describes the Ma-
chi neControl | er, which implementsthat approach. The Ma-
chi neCont rol | er extends Behavi or ,and it mimics the standard

I nt erpol at or behavior but with itsown clock. First, it hasthe
fields required to create and maintain an independent simulation
clock:

private | ong simlationd ock;
private int tine_step;
private WakeupOnH apsedTi ne yawn;

and second, theini tial i ze() and the processSti mul us()
methods required by the Behavi or class:
public void initialize() {
si mul ati ond ock = 0;
time_step = 45; /1 mlliseconds
yawn = new WkeupOnEl apsedTi ne(ti me_step);
wakeupO(yawn) ;
[ Four Bar Li nkage instance].initialize();

public void processStinul us(Enureration e) {
/1 do the required housekeepi ng
simul ati ond ock += time_step;
wakeup(yawn) ;
/1 then call
[ Four Bar Li nkage i nst ance] . sol ve()

3}

By exercising control over the advance of the simulation clock at
the same time that the ssmulation model is advanced, this class
ensures that successive model states are sufficiently close ensur-

ing in turn, the stability and convergence of the iterative solution
of the constraint conditions.

4.0 SUMMARY

This paper proposed ageneral approach to ‘closing the loop’ on a
scene graph to support solution of inverse kinematic constraints,
but it used specialized methods to solve a particular example
problem. While the general approach may be applicable to a broad
spectrum of fields, the detailed methods must be adapted to spe-
cid fied. For example, analytical (as opposed to numerical)
methods offer high performance in computer animation but may
require specia kinematic structure [4]. Where the Jacobian is used
to express the relationship between dependent variables and dif-
ferential displacements at constraints, preferences for solution
methods depend on the need for speed balanced against the accu-
racy requirements, the system redundancy, and the potentia for
the existence of singularities. Welman [5] describes methods based
on the cheaper transpose of the Jacobian and a complementary
heuristic approach that seeks to minimize displacement mis-
matches by varying one dependent variable at a time. The Java
3D API gives high-level access to many performance-tuned geo-
metric methods, but also restricts user access to some details of
the scene graph on which established solver methodsrely.

Mechanism animations using the techniques described in this
paper may be viewed as Java applets at VMech.com.
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